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the 88 distinct elcmenrary cellular automata (CA) rules. Based on this study and on previous 
work in discretized dynamical systems, we propose a new classification of CA, complemen- 
tary lo that of Wolfram, in which attract~r globality is important. With the use of fixed 
boundary conditions we find global periodic attractors in CA for the first lime. Not a single 
instance of altractor chaos is observed in this class of ruler. 

In the past few years, cellular automata (CA) have become a popular subject of study 
for mathematicians, computer, physical, and natural scientists [ 1 - 5 ] .  The purpose of 
this letter is to attempt to bridge the gap between CA and dynamical systems. 

By comparing the behaviour of CA to that of discretized dynamical systems [6-81 
we propose a new classification of dissipative CA, complementary to that proposed 
earlier by Wolfram [2,9]. For example, consider the logistic equation x.,~ = 
a A x , ( l  -xn), when x is discretized into 2" states. Then, most of all 2' initial conditions 
evolve to a single attractor, whose length may or may not depend on b. We call the 
property of all available initial conditions evolving to the same attractor for a given 
lattice or discretization size globality. Then, attractor globality is desirable, if CA are 
to behave similarly to continuous dynamical systems in the large-lattice limit. In order 
to find rules with global attractors, we do not need the concept of a distance or metric. 
In this sense, the new classification is topological. 

In an extensive study of a family of 88 CA rules, to be defined below, we find mostly 
instances of multiple attractors, with rather small basins of attraction. We also see 
some examples of global fixed points, as well as  periodic attractors when fixed boundary 
conditions are introduced. We, however, do not find a global attractor which grows 
with the system size, which would be the discrete equivalent of chaotic behaviour 
according to i6-81. This ieads us to conciude tentativeiy that previous observations of 
'chaos' in elementary CA correspond to 'transient chaos' [ 101 or to evolution on a 
non-global attractor. Two important caveats are that we have studied a small sample 
of all the possible CA rules, and that large-lattice features may not have emerged yet 
for the lattice sizes of 14 or less used in the present study. 

Cellular automata, originally proposed by Ulam and van Neumann [ I l l ,  are systems 

belonging to a finite set, which is updated (usually synchronously) as a function of 
the microstates of a small neighbourhood around the site. One may interpret the sites 
as being placed contiguously in space, or alternatively, as being digits or bits which 
when properly weighed and added form the system's macrostate (a single number or 
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label) at any time step. In the first case, the CA, being a system with many spatial 
degrees of freedom, is analogous to a partial differential equation or coupled map 
lattice. In the second case, being a system with one degree of freedom, it is analogous 
to an ordinary differential equation or iterated map. 

The first approach, which corresponds loosely to a study of patterns, has been quite 
successful. For example, applications to hydrodynamics [12] have become a separate 
and fast-growing field. Wolfram [9] proposed a phenomenological classification of 

static non-interfering spatial patterns, (3) 'chaotic' behaviour, often accompanied by 
self-similar patterns, and (4) complex, often long-lived structures. It was noticed by 
Wolfram that the Hamming distance between nearby initial conditions grows in different 
ways for the four classes. This gives his classification a 'metric' footing. This 
classification has motivated much research on invariant distributions, long-range corre- 

CA rules [13]. 
Some advance has been made in the study of CA as dynamical systems as well. 

Standard methods are to study the structure of limit cycles and transients for different 
rules as a function of system size. The work has been mathematical [ 141 as well as 
numerical. In particular, [ 151 is an extensive numerical study of all distinct elemenfary 

hoods, which gives a total of 256 rules. Of these, due to symmetries and 0-1 exchanges, 
only 88 are distinct. In this study, Peck has measured mean and maximum transient 
and cycle lengths, as well as the number of cycles and degree of dissipation as a 
function of lattice size. 

It is instructive to compare Peck's results to the available studies of discrete 
dynamical systems [6-81. Such studies have been performed for finite-state versions 
of well known dissipative maps such as the logistic and Htnon maps. The main results 
are as follows. ( I )  There is typically an almost global attractor, which attracts most 
initial conditions. This is also the case in the continuous map, and a common feature 
in dissipative dynamical systems, although problems with more than one basin of 
attraction (the long-time trajectories for such systems cannot be called attractors, as 
they are decomposable) have also been studied [16J In this respect, as the discretization 
step becomes finer, the finite state approximation becomes better. (2) One can distin- 
guish between regular and chaotic behaviour. The latter is not obvious, since a 
finite-state deterministic map iteration must end in a limit cycle of period no longer 
than the total number of available states. However, for periodic behaviour with small 
cycles, one finds that the attracting cycle is of constant size, independent of the number 
of states of the system. For chaotic behaviour, the cycle length grows as a power of 
the total number of states corresponding to the capacity dimension (typically one half). 
As pointed out in [6] even with fairly coarse discretization, one can distinguish already 
between regular and chaotic behaviour. 

Peck's study is not satisfactory in  two respects: First, although it enumerates cycle 
lengths, it gives no idea of the fraction of phase space attracted to each cycle (its basin 
size). Secondly, except for global fixed points, there seems to be a high multiplicity 
of basins, often related to the lattice size. These features are very discouraging in light 
of the results of [6-81. 

We now summarize a recent study of the basin sizes of elementary CA. Since the 
cycle multiplicity in Peck's study seems to be related to the use of periodic boundary 
conditions, we have in addition investigated fixed boundary conditions: the four 
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combinations of fixed zeros and ones to the left and right of the CA lattice. These 
boundary conditions (BCS) diminish the probability of cyclic permutations or shifts, 
identified by Jen [I41 as a mechanism for multiple limit cycles; they can also ‘generate‘ 
or ‘absorb’ information, as the rightmost bits and the binary point do in the iteration 
of the Bernoulli shift (xn+, = 2xn, mod 1 ) .  

The entire phase space for all 88 elementary rules and five BCS for lattice sizes of 
9-12 was investigated. This involved iteration of all possible 2’-ZL2 initial conditions 
for up to 2?-212 time steps, until a limit point or cycle is reached, and an exhaustive 
compilation of limit cycles and their basin sizes. 

For the studied rules, lattice sizes and B C ~  (including practically all periodic BCS), 

we see in most cases a broken down phase space with several attractors; we often see 
that the fraction of phase space occupied by the largest basin decreases as the system 
size grows (for example, rules 2-7 and many others). We call this non-global behaviour 
class A> it is of little interest as a dynamical system. We must note that, while in some 
cases this happens in a regular fashion, in others the largest basin size oscillates, as 
in rule 60 for which it takes u p  25, 12, 34 and 5 percent of the available phase space 
for L = 9-12 respectively. The present study can say very little about the infinite-lattice 
limit, and we suggest more detailed work on particular rules of interest. Globally 
attracting fixed points, which are of much more physical interest, will be called class 
B. All of Peck‘s observed rules can be put in one of these two classes. We find seventeen 
elementary rules which with at least one of the five possible boundary conditions 
belong to this class: rules 0, 2, B, 14, 15, 24, 32,34,40, 42, 128, 130, 136, 138, 152, 160 
and 162 in Wolfram’s rule-numbering system 121. 

We also see a dozen examples of global periodic attractors (of constant period 2, 
3, 4 or 6 for lattice sizes up to 14), once the fixed 6cS have been used. We call this 
behaviour type C; it corresponds to periodic behaviour in discretized dynamical systems 
[6-81. It has neuer been observed before in CA. The particular rules which, for at least 
one boundary condition show this class C behaviour are rules 2, 3, 10, 11, 24, 27, 34, 
35, 42, 56, 57, 58, 130 and 152 in Wolfram’s nambering system. 

Surprisingly, no global attractors of length growing with the lattice size were found 
in this study. Since this is the description of attractor chaos in discretized dynamical 
systems, the conclusion is that the ‘chaos’ reported in the CA literature may correspond 
to iong transients, ieading io a fixed poini or iimii cycie, o r  io evoiuiion aiong a 
non-global limit cycle which cannot be called an ‘attractor’ in the dynamical systems 
sense. This finding is supported by concurrent work of Langton [I31 and of Gallas 
and Herrmann [ 171, who have identified Wolfram’s class 3 and 4 behaviour respectively 
as transient phenomena. 

In this letter we have proposed a classification of dissipative CA which takes into 
aicOiini how a Bets on a!! ins;& =f j.;g a: 
the shape of patterns resulting from particular rules and initial conditions. In particular, 
we put rules in which all initial conditions evolve to a single attractor in separate 
classes; this classification is consistent with what is known about finite-state iterations 
of dissipative maps. It is topological in the sense that the notion of distance is never 
used, and therefore complementary to  Wolfram’s classification. In the new 
c!issifirs!io~, m ~ s !  ru!en ei!her !ead to a broken-down phase space (class A), or to a 
global fixed point (class B). By using non-periodic boundary conditions we obtain for 
the first time global CA attractors of period other than one, independently of lattice 
size (class C). Another possible class, D, corresponding to a global attractor of length 
growing with the system size, was not found in elementary CA. This class would 
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correspond to true attractor chaos. Classes B, C and D are found in discretized versions 
of dissipative iterations. This classification is tentative: rules with two (or more) large 
basins which occupy a constant, significant fraction of phase space for all CA lattice 
sizes, or rules with almost-global attractors could be considered as belonging to a class 
other than A. Also, since we only considered lattice sizes of 14 or less, a number of 
large-lattice effects could appear. Detailed studies of particular rules, such as those 
that have been done for rule 22 by Grassberger [13] and Zabolitzky [18] can provide 
more information about this. 

Two interesting questions remain, which we hope will be addressed by other 
investigators. Are there non-elementary CA rules which belong to class D? Can a proof 
be provided for the existence of global periodic attractors for all lattice sizes? 

We thank H Gutowitz, E Jen and C G Langton for useful discussions, an anonymous 
referee for several suggestions on the manuscript, and the SERC for financial support. 
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